Drying of Pigment-Cellulose Nanofibril Substrates

نویسندگان

  • Oleg Timofeev
  • Katariina Torvinen
  • Jenni Sievänen
  • Timo Kaljunen
  • Jarmo Kouko
  • Jukka A. Ketoja
چکیده

A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drying cellulose nanofibrils: in search of a suitable method

Increasing research activity on cellulose nanofibril-based materials provides great opportunities for novel, scalable manufacturing approaches. Cellulose nanofibrils (CNFs) are typically processed as aqueous suspensions because of their hydrophilic nature. One of the major manufacturing challenges is to obtain dry CNFs while maintaining their nano-scale dimensions. Four methods were examined to...

متن کامل

Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties

Cellulose nanofibrils (CNF) were spun into filaments directly from suspension without the aid of solvents. The influence of starting material properties and drying temperature on the properties of filaments produced from three different CNF suspensions was studied. Refiner-produced CNF was ground using a microgrinder at grinding times of 50 and 100 minutes. Filament spinning was performed using...

متن کامل

Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression.

Hybrid aerogels consisting of cellulose nanofibers (CNF) and modified few-walled carbon nanotubes (FWCNT) are investigated under cyclic mechanical compression to explore "electrical fatigue". For this purpose the FWCNTs were hydrophilized, thus promoting their aqueous dispersibility to allow FWCNT/CNF hybrid hydrogels, followed by freeze-drying to obtain hybrid aerogels. The optimized compositi...

متن کامل

Elasticity of Cellulose Nanofibril Materials

Josefsson, G. 2015. Elasticity of Cellulose Nanofibril Materials. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1215. 60 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9135-2. The demand for renewable load-carrying materials is increasing with increasing environmental awareness. Alternative sources for materials manufacturing a...

متن کامل

Spray-drying Cellulose Nanofibrils: Effect of Drying Process Parameters on Particle Morphology and Size Distribution

Spray-drying was chosen as an appropriately scalable manufacturing method to dry cellulose nanofibril (CNF) suspensions. Spray-drying of two different types of CNF suspensions—nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC)—was carried out using a laboratory-scale spray dryer. Effects of three spray-drying process parameters on particle morphology and particle size distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014